WHEN IS A DERIVATOR REPRESENTABLE?

G. RAPTIS

Let D be a prederivator. The underlying diagram functors define a morphism of prederivators

$$\text{dia}_D : D \to \mathcal{C}at(-, D(e)).$$

A prederivator D is called representable if dia_D is an equivalence of prederivators.

Let \mathcal{C} be a right derivable category in the sense of [1]. The associated prederivator $D(\mathcal{C})$ is a right derivator satisfying (Der5) [1, 2.21]. Suppose that the representable prederivator

$$X \mapsto \mathcal{C}at(X, \text{Ho}(\mathcal{C}))$$

is also a right derivator and that the morphism $\text{dia}_{D(\mathcal{C})}$ is cocontinuous. Then we may regard the homotopy category $\text{Ho}(\mathcal{C})$ as a right derivable category where every morphism is a cofibration and the weak equivalences are the isomorphisms. Moreover, the canonical functor

$$\gamma : \mathcal{C} \to \text{Ho}(\mathcal{C})$$

is right exact in the sense of [1, 1.9]. Then dia is simply the morphism induced by γ. Since $\text{dia}(e)$ is obviously an equivalence, [1, 3.20] implies that dia is also an equivalence of right derivators, i.e., $D(\mathcal{C})$ is representable.

The fact that $\text{Ho}(\mathcal{C})$ admits (co)limits is by itself insufficient for the argument. A counterexample is the derivator associated to the Waldhausen category of finitely generated stable modules over \mathbb{Z}/p^2. The homotopy category is equivalent to the category of finite dimensional F_p-vector spaces (see [2, p. 1831]). Thus it is essential to know that dia is also cocontinuous (cf. [2, 4.5]).

On the other hand, assuming that dia is cocontinuous, it does not follow that γ is an equivalence. A trivial counterexample is the right derivable category of sets where every map is a weak equivalence. Its homotopy category is the terminal category.

It remains open whether D is always representable if dia_D is cocontinuous. If this fails in general, it would show an interesting feature of derivators with (good) models. On the other hand, showing that this is true seems to require an extension of [1, 3.19, 3.20] to abstract derivators.

References

E-mail address: georgios.raptis@mathematik.uni-regensburg.de

Date: June 30, 2014.