A PROOF OF THE GILLET-WALDHAUSEN THEOREM

GEORGE RAPTIS

Let \mathcal{E} be an exact category which is closed under kernels of surjections in an ambient abelian category \mathcal{A} (see [4]). Let $\text{Ch}^b(\mathcal{E})$ denote the category of bounded chain complexes in \mathcal{E} where the cofibrations are the degreewise admissible monomorphisms and the weak equivalences are the quasi-isomorphisms (as chain complexes in \mathcal{A}). We let $\text{Ch}^b(\mathcal{E})_{[a,b]}$ denote the full Waldhausen subcategory of those chain complexes which are concentrated in degrees $[a,b]$, $a \leq b$. Our goal for the proof of the Gillet-Waldhausen theorem is to determine the K-theory of this Waldhausen subcategory for all $a \leq b$.

We consider a larger class of weak equivalences in $\text{Ch}^b(\mathcal{E})_{[a,b]}$ which consists of the chain maps which induce isomorphisms on H_i for $i < b$. This class of weak equivalences defines a new Waldhausen structure on $\text{Ch}^b(\mathcal{E})_{[a,b]}$ (with the same cofibrations), which we denote by $\text{Ch}^b(\mathcal{E})_{<b}$. Moreover, this new Waldhausen category is saturated (i.e. it has the “2-out-of-3” property) and admits (functorial) factorizations (i.e. every morphism can be written as the composition of a cofibration followed by a weak equivalence). The factorizations are given by the standard mapping cylinder construction truncated in degrees $> b$. Note that the suspension functor on $\text{Ch}^b(\mathcal{E})_{<b}$, iterated $b - a + 1$ times, is weakly trivial. As a consequence, the K-theory of the Waldhausen category $\text{Ch}^b(\mathcal{E})_{<b}$ is homotopically trivial.

Let \mathcal{E}' be the full Waldhausen subcategory of $\text{Ch}^b(\mathcal{E})_{[a,b]}$ of those chain complexes which have trivial homology in degrees $< b$. In other words, these are exactly the chain complexes which become weakly trivial in $\text{Ch}^b(\mathcal{E})_{<b}$. Applying the Fibration Theorem\(^1\), we obtain a homotopy fiber sequence

$$K(\mathcal{E}') \longrightarrow K(\text{Ch}^b(\mathcal{E})_{[a,b]}) \longrightarrow K(\text{Ch}^b(\mathcal{E})_{<b}) \simeq \ast$$

\(^1\) Waldhausen’s Fibration Theorem in [3, 1.6.4] (see also [1, A.3]) requires also the extension axiom, which $\text{Ch}^b(\mathcal{E})_{[a,b]}$ does not satisfy. However, a small modification of the proof in [3] shows that this axiom is not needed. We recall that the proof in [3, 1.6.4] uses the extension axiom in order to identify $v\mathcal{S}_n \mathcal{C}$ with $v\mathcal{S}_n \mathcal{F}_n(\mathcal{C}, \mathcal{C}^w)$. But the inclusion $v\mathcal{S}_n \mathcal{C} \subset v\mathcal{S}_n \mathcal{F}_n(\mathcal{C}, \mathcal{C}^w)$ is always a weak equivalence because we have weak equivalences for each $n \geq 0$,

$$v\mathcal{S}_n \mathcal{C} \times v\mathcal{S}_n \mathcal{F}_n(\mathcal{C}, \mathcal{C}^w) \simeq v\mathcal{S}_n \mathcal{S}_n \mathcal{C}^w \simeq v\mathcal{S}_n \mathcal{F}_n(\mathcal{C}, \mathcal{C}^w)$$

by the Additivity Theorem. Here $\mathcal{S}_n \mathcal{C}$ denotes the Waldhausen subcategory of diagrams in \mathcal{C}

$$c_0 \sim c_1 \sim \cdots \sim c_n$$

with the usual cofibrations and where the (v)-weak equivalences are defined pointwise. This has Waldhausen subcategories which are identified with \mathcal{C}, embedded as constant diagrams, and $\mathcal{S}_n \mathcal{C}^w$, embedded as diagrams with $c_0 = \ast$, and there is an equivalence of categories between $\mathcal{S}_n \mathcal{C}$ and $\mathcal{E}(\mathcal{C}, \mathcal{S}_n \mathcal{C}, \mathcal{S}_n \mathcal{C}^w)$.\n
\n
1
and therefore the map $K(\mathcal{E}) \to K(\text{Ch}^b(\mathcal{E})_{[a,b]})$ is a homotopy equivalence.

There are exact functors (of Waldhausen categories):

(i) the b-th homology functor $H_b : \mathcal{E} \to \mathcal{E}$. This is well-defined because $\mathcal{E} \subset \mathcal{A}$ is closed under kernels of surjections in \mathcal{A}.

(ii) the inclusion $i : \mathcal{E} \to \mathcal{E}$ of chain complexes concentrated in degree b. The composite $H_b \circ i$ is the identity functor and the composite $i \circ H_b$ is weakly equivalent to the identity functor. Hence $K(i) : K(\mathcal{E}) \simeq K(\mathcal{E}) : K(H_b)$. As a consequence, the inclusion $j_b : \mathcal{E} \to \text{Ch}^b(\mathcal{E})_{[a,b]}$ of chain complexes concentrated in degree b induces a homotopy equivalence

$$K(j_b) : \mathcal{E} \xrightarrow{\simeq} \text{Ch}^b(\mathcal{E})_{[a,b]}.$$

For $a \leq k \leq b$, we consider the inclusion $j_k : \mathcal{E} \to \text{Ch}^b(\mathcal{E})_{[a,k]}$ of chain complexes concentrated in degree k. By the Additivity Theorem, for each $a \leq k < b$, the induced map $K(j_k)$ agrees up to sign with the map $K(j_{k+1})$. It follows inductively that $K(j_k)$ is a homotopy equivalence for each $a \leq k \leq b$. In particular, the inclusion functor, for $n \geq 0$,

$$j_0 : \mathcal{E} \to \text{Ch}^b(\mathcal{E})_{[-n,n]},$$

induces a homotopy equivalence

$$K(j_0) : \mathcal{E} \xrightarrow{\simeq} \text{Ch}^b(\mathcal{E})_{[-n,n]}.$$

Passing to the colimit of the homotopy equivalences (2) as $n \to \infty$, we obtain the homotopy equivalence of the Gillet-Waldhausen theorem [2, 1.11.7], [4, V.2.2]:

$$K(\mathcal{E}) \xrightarrow{\simeq} K(\text{Ch}^b(\mathcal{E})).$$

References

Email address: georgios.raptis@ur.de